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Abstract 

Metadata Analytics is a term used to describe a research field that utilizes quantitative methods and metadata for 

publications, patents, datasets, and other research entities to study science of science.  Metadata analytics inherits 

the bibliometric and scientometric tradition while infusing novel data sources – metadata for datasets – to extend 

the traditional bibliometric and scientometric research. The large scale of metadata from scientific data repositories 

offers both opportunities and challenges in the quantitative study of science. This paper discusses the problems 

and opportunities that metadata analytics contends with from a methodological perspective. Using the authors’ 

experiences over the course of a multi-year metadata analytics project, the paper focuses on the subtle differences 

between methods and science (or means and end) that arise when conducting research in metadata analytics and, 

for the same reason, bibliometrics and scientometrics . Metadata analytics is both a methodology and a research 

field. The intertwining of methods and science in metadata analytics can create pitfalls for researchers. Steering 

clearly between the means and ends in metadata analytics is essential to produce good science. 

Introduction 

Research in the science of science can be generalized in three broad areas: the science of career, 

the science of collaboration, and the science of impact (Wang & Barabási, 2021). The 

publication metadata – articles and their authors, subjects, and citations – have been the primary 

sources for establishing metrics and models for exploring the patterns, evaluating the impact, 

and predicting the trends of the scientific research enterprise. Using publication metadata 

exclusively for studying the science of science reflects the academic evaluation culture that 

gives a heavier weight to publications than to other research activities such as data collection 

and processing. The fact that scientific journal articles represent the end-product of a research 

lifecycle leaves a data gap due to a reliance on publication-centric metadata. As a result, we 

exclude most research activity taking place prior to publications. This data gap is problematic 

because it neglects an important asset in data-intensive science: datasets and the authors related 

to the creation of these datasets. In the age of "fourth paradigm” science, scientific data 

production is increasingly recognized as part of scholarly output, as exemplified by data 

journals such as Nature’s Scientific Data and the Biodiversity Data Journal. Clearly, without 

capturing the full scientific lifecycle – including data production and its authorship – the study 

of the science of science would be incomplete and vulnerable to bias.  

In the last decade, the Metadata Lab team at the School of Information Studies, Syracuse 

University, has been trying to address this data gap in the science of science research. We have 

been using the metadata in GenBank records to study the structures and dynamics of 

collaboration networks of the global research community and developed a theoretical 

framework of Collaboration Capacity (CC) (Qin et al., 2018; Hemsley et al., 2022). The CC 

framework incorporates data submission metadata together with the associated publication 

metadata that span from the debut of GenBank in 1984 until the present time (our last GenBank 

metadata update contains data up to 2021) and established new metrics to reflect the dynamics 

of the data to knowledge process (Hemsley et al., 2020). We use a term Metadata Analytics to 

represent this new approach that utilizes metadata from scientific data and/or publication 



repositories to study the career of scientists, collaboration networks, knowledge diffusion 

patterns, and the state of the scientific research enterprise.  

The notion of Metadata Analytics stands both as a research field of its own right and as a 

methodology. As a research field, its history can be traced back to the 1960’s when the 

exponential growth of scientific literature triggered the advent of Science Citation Index and a 

wide range of research topics under the names of bibliometrics, scientometrics, and 

informetrics. The measures and metrics used in these analyses have produced bibliometric 

“laws” and statistical models such as the Bradford Law of Scattering of scientific literature 

(Summers, 1983) and the Lotka’s law of scientific productivity (Lotka, 1926; Bookstein, 1977). 

The availability of big data (as well as big metadata) and rapid advances in computational 

methods afford metadata analytics opportunities to move from empirical, explanatory to be 

more exploratory and theoretical. As a methodology, metadata analytics employs quantitative 

approaches to study the phenomena of science workforce and careers, scientific productivity, 

collaboration networks, data and knowledge transfer, and innovations. Simple frequency counts 

of authors, papers, and citations have been transformed into sophisticated measures to address 

the multi-facets and complexity in evaluating the science research enterprise. Adding metadata 

from data repositories on top of these changes, we see a need for a more inclusive label for the 

quantitative study of data-intensive science today.  

While metadata from large data repositories have been proved to be able to offer new insights 

into the collaboration networks and advance our understanding of the science of science, there 

is a heavy cost in making these metadata as well as other associated data sources readily 

analyzable due to the data formats that are not easily interoperable nor friendly for scientometric 

analysis. At a macrolevel, the large volume of repository metadata creates a burden for data 

parsing, cleaning, and transformation. If additional data are collected and merged, e.g., funding 

data from NIH RePORTER, there will be an extra, non-trivial burden and cost in data wrangling 

and merging to connect metadata from different repositories. The need to constantly update the 

metadata collected causes repetition in data processing because most computational codes are 

not reusable without substantial maneuvering. 

This paper discusses metadata analytics from a methodological perspective. The goal is to 

address the data problems and review the approaches used in metadata analytics. Discussions 

of this type are important because the boundaries between metadata analytics as a methodology 

and as a field of research are not always clear-cut and can cause confusions between the means 

and ends of metadata analytics. By laying out the similarities and differences between the two 

aspects, we hope to establish a clearer understanding of metadata analytics and avoid pitfalls 

and mistakes that could impact the research reliability and validity. This paper is not intended 

to conduct a comprehensive review of all methods used in bibliometrics and scientometrics, 

rather, it attempts to clarify the subtle differences between the dual aspects of metadata 

analytics—as a field of its own right and as a method. The rest of this paper will be organized 

in the following sections: review of metadata analytics methods, big metadata in data 

repositories, experience from GenBank metadata analytics project, and conclusion.  

Review of Metadata Analytics Methods  

Bibliometrics 

Using metadata to analyze scientific research enterprise is not new and has been around for as 

long as the exponential growth of scholarly literature started in the early 1960’s. A better-known 

term is Bibliometrics, which is generally considered as a kind of method and measurement for 

studying literature and its authors. This term was first used by Alan Pritchard who defined 

bibliometrics as the “application of mathematics and statistical methods to books and other 



media of communication” (Pritchard, 1969, p. 349). Bibliometrics was also called the 

“scientific study of recorded discourse” (Schrader, 1981). Bibliometric analyses can take a 

relational or evaluative approach. The former answers research questions such as “Who is 

related to whom?” Relational bibliometric analyses tend to be descriptive and explanatory and 

can be applied to study individuals, organizations, domains, or geographical areas. The latter – 

evaluative  bibliometric analyses – is commonly used to assess "the level of quality, importance, 

influence, or performance of  individual documents, people, journals, groups, domains (subject 

areas, fields, or disciplines), or nations” (Borgman and Furner, 2002, p. 11). 

Measures used in both explanatory and evaluative studies may vary widely, but in essence they 

are derived from frequency counts of major research output types and entities associated. We 

use “unit of analysis”  and their applications in four research areas of science of science in Table 

1 to construct a basic understanding of how metadata units are used. These units of analyses 

can be coordinated, combined, and transformed to generate or formulate many sophisticated 

measures according to research questions and purposes. Historically, bibliometrics has used the 

publication metadata exclusively as the unit of analysis. Whether it is the h-index (Hirsch, 

2005), Q-Model (Wang & Barabási, 2021), or invisible college (Crane, 1972), these metrics are 

derived from the products of a “Publish or Perish” academic culture. The role and contribution 

of metadata for datasets in scientific research lifecycle was either taken for granted or not in the 

equation of bibliometrics.  

Table 1. Unit of analysis vs. Applications in metadata analytics 

Unit of analysis Applications  

Career Collaboration/ Teams Knowledge/ 

Innovation 

Impact 

Publication count X X   

Citation count to publications   X X 

Publication authors X X   

Citation count to datasets   X X 

Data authors X X   

 

Citation-based measures, for example, are often used to explain and evaluate citing and cited 

relations among publications and rank authors, papers, and journals based on their positions in 

citation networks. The measures shown in Table 2 summarize the 39 measures listed in Bollen 

et al. (2009) from a methodological perspective. These measures are derived from citation 

counts that have been processed and transformed into statistical probabilities (e.g., journal use 

and cite probabilities) and network properties (e.g., degree and betweenness centralities). 

Although Bollen et al. (2009) call the 39 measures as “scientific impact measures,” they have 

inherent limitations in depicting the whole picture of impact, which have been discussed 

extensively in past research (MacRoberts & MacRoberts, 1989). 

Table 2. Existing measures for scholarly impact (compiled according to Bollen et al., 2009) 

Function of 

measures 

Type 

Citation Usage 

Ranking Scimago Journal Rank, PageRank, Y-factor PageRank  

Citedness Cites per doc, Journal Impact Factor, Scimago 

Total Cites, Journal Cite Probability  

Journal Use Probability, 

Usage Impact Factor 



Relation Closeness centrality, out-degree centrality, 

degree centrality, in-degree centrality, 

betweenness centrality 

Closeness centrality, degree 

centrality, in-degree centrality, 

betweenness centrality, out-

degree centrality 

Index Immediacy index, H-index, citation half-life  

(Source of Table 2: Qin, 2010) 

Another important area of bibliometric study is the evaluation of people (Borgman & Furner, 

2002). Number of papers, venues of published papers, and citation counts are typically used to 

assess a faculty member’s productivity, quality, and influence of her/his research outputs in the 

tenure and promotion process, despite the limitations identified in literature (MacRobers & 

MacRoberts, 1989). Co-author counts are the foundation to construct collaboration maps to 

explain researchers’ positions in collaboration networks and the nature of their connections with 

collaborators. The study of co-authorship networks combines the publication co-author and/or 

citation/co-citation counts and network science methods to discover and model the network 

shapes and structures as well as scholarly communities (Kumar, 2015).  

The increasing attention to data-intensive science brings new developments in bibliometric 

studies. Citations to datasets have been used to measure the use and infer the impact of datasets 

(Silvello, 2018). Publication citation networks have been used widely in scientometric analyses 

because they indicate “crediting an idea, signaling knowledge of the literature, or critiquing 

others’ work” (Martyn, 1975), but datasets citation is advancing, however slowly (e.g., Zeng, 

et al., 2020). A few studies have begun to incorporate metadata from data submissions and 

associated publications to measure the impact of scholarly products other than publications 

(e.g., Belter, 2014), study scientific collaboration networks (e.g., Li, et al, 2022), and estimate 

data use statistics (e.g., Robinson-Garcia, et al., 2017). The expansion of data sources for 

bibliometric studies has gone beyond the publication metadata to include metadata for datasets, 

funded grants, and patents. As data-intensive science generated more data than ever before and 

metadata for datasets in open repositories are being used in metadata analytics, questions arise 

about the new label Metadata Analytics:  Is metadata analytics a methodology or a science? Is 

there any difference between metadata analytics and bibliometrics? How will the inclusion of 

metadata for datasets affect the quantitative study of science?  

The term metadata analytics emerged in this context to represent a research area that applies 

computational and network science methods and techniques to the analysis of metadata from 

scientific data repositories (Qin et al., 2018). The fact that publication metadata is no longer the 

only data source for quantitative study of science warrants the use of metadata analytics to be 

more inclusive of new data sources. As such this term carries more weight on the side of 

methodology than on the side of a science because even though the empirical findings from 

metadata analytics may be able to derive statistical or mathematical models and indices, the 

explanation and interpretation of empirical findings and statistical models often need the help 

of social sciences theories and methods to make sense of the findings and models.  

Network Science 

Network science is a popular approach used in bibliometric analysis to investigate networks of 

authors and citations for a variety of purposes, ranging from collaboration patterns and trends 

and community detection to idea development paths to innovation tracking. Research 

collaboration is typically measured by coauthorship in publications and at the international, 

interinstitutional, interdepartmental, or departmental level. Researchers in a collaboration 

network are called nodes or vertices and the relationships (i.e., coauthorship) between nodes 

are edges. Collaboration networks with very large numbers of nodes and edges together with 

variant weights of edges and other factors are highly complex as nodes have uneven numbers 



of edges and the edges may vary in length between nodes. Such networks consist of clusters or 

communities of researchers, which are self-organized, may be interconnected in some ways, 

and evolve over time (Newman, et al., 2006).  

Barabási et al. (2002) provides a summary of the characteristics of collaboration networks, 

which include: 1) most networks have the “small world” property, 2) real networks have an 

inherent tendency to cluster, more so than comparable random networks, and 3) the distribution 

of the number of edges for nodes (degree distribution) “contains important information about 

the nature of the network, for many large networks following a scale-free power-law 

distribution” (p. 591). These network theories and models have been applied in studying 

collaboration networks in biology, ecology, and physics. Several properties of scientific 

collaboration networks have been identified in these studies: small worlds are common in 

scientific communities; the networks are highly clustered; and biomedical research appears to 

have a much lower degree of clustering compared to other disciplines such as physics 

(Newman, 2001). Studies of the evolution of scientific collaboration networks shows that the 

degree distribution follows a power law and key network properties (diameter, clustering 

coefficient, and average degree of the nodes) are time dependent, that is, the average separation 

decreases in time and clustering coefficient decays with time (Barabási et al., 2002).  

Network science as a method has been applied in citation analysis as well. The metrics listed in 

the Relation category in Table 2 are typical statistical properties in measuring positions, change 

patterns, and connectedness of nodes in networks. For example, citation network clusters can 

reveal how research specialties transformed and changed into stand-alone fields over time 

(Rosvall & Bergstrom, 2010). Citation or co-citation networks are the major approaches in 

detecting and visualizing patterns and trends in research fields, examples of which include the 

scientometric analysis and visualization of research activities in the architecture, engineering, 

and construction industry (Darko et al., 2020) and a co-citation analysis of emerging trends and 

new developments in information science (Hou et al., 2018). The versatility of network science 

makes it a popular approach in bibliometric and scientometric analyses for studying not only 

collaborative relations among authors but also the “formal and informal flows of information, 

ideas, research practices, tools, and samples” (Fortunato et al., 2018, p. 3). Network science is 

a research field of its own right yet can be applied in almost all aspects of science of science 

research.  

Big Metadata in Research Data Repositories  

The emergence and evolution of data-intensive science not only changed the way science is 

conducted but also created a vast amount of new data sources that can be utilized to study the 

science enterprise. Scientific data have grown at an exponential rate just as what scientific 

literature’s growth experienced after the World War II (Meadows, 1998; de Solla Price, 1986). 

The data repositories together with software applications form an important part of the 

cyberinfrastructure (CI) serving the data-intensive science research. There are abundant 

examples demonstrating the large scale research networks enabled by the CI environment: the 

use of CI allows researchers to integrate data from multiple observatories in the Laser 

Interferometer Gravitational Wave Observatory (LIGO) experiments, to gather and analyze 

data over spatial and temporal dimensions in the Long Term Ecological Research Network 

(LTER), and share and update genetic sequencing data in the National Center for Biotechnology 

Information (NCBI) data repository GenBank. In all three examples mentioned here, research 

collaboration enabled by CI have expanded to an unprecedented scale, either directly as 

reflected in long lists of authors in publications or indirectly as reflected in the fast-growing 

sizes of data and publication repositories. These advances in science have outpaced our ability 

to develop quantitative models and metrics to analyze CI-enabled science enterprise. In this 



paper we use GenBank and its related data repositories at NCBI to illustrate the value of 

metadata in these data repositories and why they can and should be included in modern 

metadata analytics for the study of the science of science.  

NCBI Data Repositories 

NCBI data repositories curate data on genomic projects, biosamples, molecular sequences, 

chemicals, and bioassays, as well as the software tools for finding, identifying, selecting, 

obtaining, and exploring these biomedical data (Sayers et al., 2021). GenBank is part of the 

International Nucleotide Sequence Database Collaboration (https://www.insdc.org/) that 

curates publicly available genetic sequences with annotations. As the largest nucleotide data 

repository in the world, it contains sequences from all branches of life and is considered a 

foundation for medical and biological discovery (Bloom et al., 2021).  

The role of GenBank in medical and biological discovery makes it critical to link the sequence 

data to other relevant repositories. Many annotation records in GenBank have been linked to 

other related data archives or repositories. For example, a GenBank record may contain IDs 

from BioProject and BioSample databases to allow for tracking from which BioProject and 

BioSample the genetic sequences were generated. A record in ClinVar (a database for genomic 

variations that affect human health) contains GenBank accession number(s) that allow 

researchers to traverse multiple databases to gather related genomic data and track 

developments.   

Sequence data submitted to GenBank provide information on the sequence as well as the 

references (i.e., publications) associated with the sequence data (see Figure 1 for a sample 

record). The direct links between authors of sequence data and the publications add not only a 

new data source beyond the publication metadata but also opportunities to re-examine the 

conventional measures in which the data production metadata have been absent. As scientific 

research becomes increasingly data-intensive, there is every reason for us to consider the data 

author and submissions when studying the science of career, collaboration, and impact.  

https://www.insdc.org/


 

Figure 1. The metadata section in a GenBank annotation record  

(source: https://www.ncbi.nlm.nih.gov/nuccore/ON647546)   

Other Data Sources 

In addition to metadata from open research data repositories, there are a wide variety of other 

data sources that might be able to be used for triangulation or primary analysis.  For example, 

the NIH RePORTER, Patents, NSF statistics, MS Academic Graph, Semantic Scholar, and 

Commercial databases such as Web of Science, Elsevier Scopus, and IRIS UMetrics, and Open 

Alec are rich data sources that can offer contextual information about datasets.  

https://www.ncbi.nlm.nih.gov/nuccore/ON647546


Challenges in Using Repository Metadata as a Data Source 

Just as research data are pivotal to modern science, metadata describing research data are also 

pivotal for data discovery, sharing, reuse, crediting authors, and reproducing the research. 

Longitudinal metadata can also offer insights into the history of science advances and the 

development of science enterprise at national, disciplinary, and institutional levels. The 

metadata for data authors and datasets only recently started to be included in the study of science 

of science (Costa et al., 2016; Qin, Hemsley, & Bratt, 2022). While opportunities in utilizing 

metadata from data repositories as a research data source are exciting and promising, there are 

major obstacles in using them to conduct research because of their inherent complexity (Bratt 

et al, 2017), messy, ambiguous, and unstructured nature (Chen & Sarkar, 2011). Idiosyncratic 

structures and formats in data repositories vary greatly from discipline to discipline, which 

make data fusion and integration extremely challenging for non-data science researchers. A 

significant investment of skilled professionals, computing resources, and funding is needed for 

fully realizing the value of metadata to enable data-intensive interdisciplinary research.  

Aside from the problems in data structures and readiness for analysis, metadata from data 

repositories can often blur the boundaries between science and methodology, e.g., network 

science is a method for collaboration network analysis but at the same time it is also a research 

field itself. The blurring boundaries between the study of science and the methodologies for 

studying science can confuse the end and means in metadata analytics.  

Metadata analytics often needs to collect metadata from multiple types of repositories in 

addition to those for curating scientific data. Metadata about patents and funding, for example, 

can be combined with metadata from GenBank to study scientists’ career trajectories and 

collaboration networks as well as the impact of enablers for collaboration capacity (Hemsley, 

Qin, & Bratt, 2022). The triangulation of these data can offer more insightful analysis on 

collaboration networks, research performance, funding, and knowledge diffusion.  

Experience from GenBank Metadata Analytics Project  

The GenBank metadata analytics project started in 2012 with a pilot test for exploring the 

feasibility of including data submissions in the science of science research. This project started 

with a goal to investigate the research network structures and dynamics emerging around 

cyberinfrastructure. The metadata we collected from GenBank initially span from its inception 

in 1984 to 2013 and later had two updates that cover up to May 2021.  

The metadata section in a GenBank annotation record has the function of identifying the genetic 

sequence, linking associated references with the sequence, and documenting the submission 

information (Figure 1). NCBI releases GenBank data in compressed files via an FTP server on 

a quarterly basis. The most recent GenBank flat file release (251, released on August 15, 2022) 

consisted of 5,836 compressed files in a total 678,133 MB with a compress ratio approximately 

20%. The number of files and size of data volume require the whole workflow from file 

downloading to extraction to wrangling to be performed by computer programs.  

A challenge that has plagued much of bibliometric and scientometric analysis is the 

disambiguation of author names. The GenBank metadata records were no exception. The 

GenBank metadata contains three categories of author names: publication author, dataset 

contributor, and patent inventor. Fortunately for data cleaning, the names are represented in a 

standard format: Surname, First Initial, Middle Initial (e.g., Börner, K.). However, no unique 

author identifiers (e.g., ORCIDs) exist to disambiguate the authors. To address this issue, we 

used the 2013 KDD Cup Data Mining Contest solution (Liu et al., 2013) and SCOPUS author 

data to disambiguate the publication and dataset scientists’ names (96% accuracy). The patent 

inventor names were disambiguated with the KDD solution plus the U.S. Patent and Trade-



mark Office (USPTO) database author names (97% accuracy). The author name dis-

ambiguation challenge will persist if author names are not uniquely identified. The author name 

disambiguation task is a temporary solution to a broader problem. For instance, the 

disambiguation task must be completed each time when we update the GenBank metadata 

records. New author names are added to the collection of metadata, each of which requires 

disambiguation to ensure there is not an overcounting or undercounting of the authors.  

Even though affiliation and other author metadata can be leveraged in author name 

disambiguation, they are not readily available to be used by the disambiguation algorithm. The 

author affiliation and geographic information (Figure 1) in a GenBank dataset submission is in 

the JOURNAL field and includes the name of the author’s university/company, and often the 

department or laboratory associated with the scientist. The geographic metadata includes the 

country in which the scientists’ university is housed and often the mailing address and/or postal 

code. When multiple authors from different institutions are credited in a data submission, the 

current GenBank data structure does not provide clear links between authors and their 

affiliations. We had to use the PubMed ID in the GenBank record, where author names are 

linked to their institutions, to match authors with their institutions in data submission metadata 

when the need arose.  

As an early explorer of using metadata from a scientific data repository for scientometric 

analysis, we gained a better understanding of this novel data source for the science of science 

research and learned two main lessons from working with this very large scale of metadata.   

Methods vs. Science (Means vs. Ends) 

The science of science research is quantitative by nature with the goal to understand the 

interactions among scientific agents and conditions underlying creativity and scientific 

discovery (Fortunato et al., 2018). In the process of cleaning and transforming data and creating 

datasets for addressing our research questions, we heavily used statistical and network science 

methods. One question we faced most frequently was: What is exactly we are doing: developing 

bibliometric/scientometric/network science theories or doing science? By doing science, we 

mean applying some methods to analyze the data, interpret the results based on some theories, 

and derive some conclusions (and possibly build new theories). For example, the analysis 

results show that GenBank publication author networks follow a power law distribution and 

possess the characteristics of scale free networks. This finding presents a trajectory that can 

leads our discovery in two directions: claim a success in proving the GenBank’s scale-free 

network characteristics or explore applicable theories for interpreting this phenomenon. 

Discussions at our team meetings clarified that network science is used in this metadata 

analytics project as a method. In other words, the network science theories and techniques are 

the means for our project; the end of our project is to conduct science of science research to 

uncover collaboration dynamics, patterns, and interactions. The fact that these empirical 

findings supported models and theories in network science opens the door for interpreting the 

findings using richer theories from social studies of science.  

The lesson learned from clarifying the boundaries between methods and science is that metadata 

analytics is a means through which we pursue the goal of studying the science of science. 

However, the boundaries are not always clear-cut. A decline in clustering coefficient over time 

may implicate a novel property of scale free networks in the context of our data, that is, the 

whole network evolved over time from a small number of “hubs” into a more distributed, flatter 

network with more smaller clusters. While this explanation may be sufficient for network 

science, it is not for our project because this network science explanation cannot answer the 

question of “so what?” In other words, the mathematical language is not the goal of our 

research, rather, it is a tool for diagnosing the data to allow quick identification of patterns and 



trends, but what these patterns and trends mean for the science research enterprise would require 

deeper exploration so that we can confidently answer the “so what” questions.  

Theoretical Development  

The massive amount of GenBank metadata for both data submissions and publications created 

an unprecedented opportunity to quantitatively study the bench (or basic) biomedical research 

enterprise (vs. bedside or clinical research). While the data analysis generated statistical 

properties and visualizations of the networks, it is important to keep in mind that all these are 

empirical phenomena. How to capture and elaborate the epistemological implications from 

these empirical phenomena becomes the first step toward theory development. We took two 

approaches in this process: building a conceptual framework by incorporating related theories 

and developing new metrics based on the new data sources.  

Based on our empirical findings and inspired by Bozeman, Dietz, and Gaughan (2001)’s 

Scientific and Technical (S&T) Human Capital model, we used a term “collaboration capacity” 

to refer to the ability of an individual researcher or a team of researchers to collaborate 

throughout the data production and publication lifecycle and sustain a network of collaborators 

over time. We built an initial “collaboration capacity framework” in Qin, Hemsley, and Bratt 

(2018), which was based on three assumptions: 1) collaboration capacity is a proxy for studying 

scientific capacity, 2) multi-stages (data, publication, and patent) of a research lifecycle can be 

used as a proxy for studying knowledge diffusion, and 3) collaboration capacity has impact on 

the level of research productivity and extent of knowledge diffusion (Figure 1).     

 

Figure 1. The collaboration capacity framework version 1.0 (Qin, Hemsley, & Bratt, 2018) 

As the data analysis unfolded and the funding data from NIH incorporated, the initial 

framework appeared to be insufficiently narrow. On a theoretical perspective, collaboration 

capacity is enabled primarily by three things: the S&T human capital, cyberinfrastructure, and 

science policy. The S&T human capital is the sum of scientific, technical, and social knowledge, 

skills and resources embodied in a particular individual (Bozeman, Dietz, & Gaughan, 2001). 

Cyberinfrastructure includes data and publication repositories, software tools, and discover 

services supporting scientific research. Science policy ensures resource allocation and 

dissemination of research outputs among other things. They are the three “enablers” of 

collaboration capacity. Whether a scientist has a strong or weak collaboration capacity, 

therefore, is dependent on how effective the enablers are in helping strengthen the collaboration 

capacity of an individual, team, or institution. On an operationalization level, the measurement 



of one’s collaboration capacity can be grouped into two categories: data production and data-

to-knowledge metrics (Figure 2).  

 

Figure 2. The collaboration capacity framework version 2.0 

The right side of Figure 2 are measures derived from both publication and dataset metadata, 

representing the quantitative, empirical aspect of collaboration capacity, while the left side is 

more theoretical. Although we have developed some metrics to operationalize the impact and 

effectiveness assessment of CC enablers, they are still under testing and evaluation. Other 

theories such as the knowledge diffusion and innovation (Morone and Taylor, 2010) may be 

useful for modeling and formulating the components in this model and interpreting the findings.  

There is still much to be explored for the version 2.0 of this framework. For example, there are 

close relations among the three enablers: allocation of funding for training can grow S&T 

human capital, which can in turn strengthen the cyberinfrastructure’s capacity in supporting 

scientific research. Collaboration capacity mirrors the effectiveness of enablers. In this sense, 

measuring collaboration capacity provides primary data to measure the effectiveness and 

impact of enablers of collaboration capacity.  

Conclusion 

In this paper we discussed the connotation of metadata analytics and its relations to 

bibliometrics and scientometrics. The use of metadata from data repositories promises new 

perspectives and opportunities in developing new theories and metrics for the science of 

science. Yet, the inherent problems related to data formats induce high costs in data collection, 

cleaning, processing, and aggregation with other data sources. Some of these problems can be 

resolved by disruptive measures, e.g., assigning standard identifiers to authors forwardly and 

retrospectively for both publications and datasets, which many journal publications already 

started implementing. Others such as abbreviated author name format in database records would 

require changes in conventions and practices from the top down. Standardization in data formats 

and author identification will be the foundation for building a data infrastructure for science of 

science research. Relabeling this research field with “metadata analytics” is to raise awareness 

of and develop appropriate strategies to address these issues in the science of science research 

community so that a data ecosystem can be built to support the research and community. 

Metadata analytics is both a methodology and a research field. It inherits the methods and 

practices that bibliometrics and scientometrics have produced but uses a wider variety of data 

sources than bibliometrics and scientometrics have traditionally used. The fact that metadata 

analytics encompasses metadata from data repositories creates a possibility to quantitatively 

study the science enterprise starting from data production (data submissions) to knowledge 



creation (publications) to innovations (patents). The intertwining of methods and science in 

metadata analytics can have hidden pitfalls for researchers. Steering clearly between the means 

and ends in metadata analytics is essential to produce good science.  
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